Trace, Norm, Etc.

Kevin Keating
Department of Mathematics
University of Florida

May 26, 2016

Local Fields

Let K be a field which is complete with respect to a discrete valuation $v_{K}: K^{\times} \rightarrow \mathbb{Z}$, whose residue field \bar{K} is a perfect field of characteristic p. Also let

$$
\begin{aligned}
\mathcal{O}_{K} & =\left\{\alpha \in K: v_{K}(\alpha) \geq 0\right\} \\
& =\text { ring of integers of } K \\
\pi_{K} & =\text { uniformizer for } \mathcal{O}_{K}\left(\text { i. e., } v_{K}\left(\pi_{K}\right)=1\right) \\
\mathcal{M}_{K} & =\pi_{K} \cdot \mathcal{O}_{K} \\
& =\text { unique maximal ideal of } \mathcal{O}_{K}
\end{aligned}
$$

Then $\bar{K}=\mathcal{O}_{K} / \mathcal{M}_{K}$.
Let L / K be a separable totally ramified extension of degree
$[L: K]=n$.

Symmetric Polynomials and Extensions

For $1 \leq h \leq n$ let

$$
e_{h}\left(X_{1}, \ldots, X_{n}\right)=\sum_{1 \leq t_{1}<\cdots<t_{n} \leq n} X_{t_{1}} \ldots X_{t_{h}}
$$

be the h th elementary symmetric polynomial in n variables.
Define $E_{h}: L \rightarrow K$ by $E_{h}(\alpha)=e_{h}\left(\sigma_{1}(\alpha), \ldots, \sigma_{n}(\alpha)\right)$, where $\sigma_{1}, \ldots, \sigma_{n}$ are the K-embeddings of L into $K^{\text {sep }}$. Then
$e_{1}\left(X_{1}, \ldots, X_{n}\right)=X_{1}+\cdots+X_{n} \Rightarrow E_{1}(\alpha)=\operatorname{Tr}_{L / K}(\alpha)$
$e_{n}\left(X_{1}, \ldots, X_{n}\right)=X_{1} X_{2} \ldots X_{n} \Rightarrow E_{n}(\alpha)=\mathrm{N}_{L / K}(\alpha)$
Suppose $L=K(\alpha)$ and $f_{\alpha}(X)=X^{n}+\sum_{h=1}^{n}(-1)^{h} b_{h} X^{n-h}$ is the minimum polynomial for α over K. Then $E_{h}(\alpha)=b_{h}$.

The Problem

Problem: Determine $E_{h}\left(\mathcal{M}_{L}^{r}\right)$.
But $E_{h}\left(\mathcal{M}_{L}^{r}\right)$ can be quite complicated. In particular, it does not have to be a (fractional) ideal.

Easier problem: Determine $\mathcal{O}_{K} \cdot E_{h}\left(\mathcal{M}_{L}^{r}\right)=\mathcal{M}_{K}^{h}$.
Equivalently, determine $g_{h}: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by

$$
g_{h}(r)=\min \left\{v_{K}\left(E_{h}(\alpha)\right): \alpha \in \mathcal{M}_{L}^{r}\right\} .
$$

Of course, $\mathcal{O}_{K} \cdot E_{n}\left(\mathcal{M}_{L}^{r}\right)=\mathcal{O}_{K} \cdot N_{L / K}\left(\mathcal{M}_{L}^{r}\right)=\mathcal{M}_{K}^{r}$, so $g_{n}(r)=r$.
$E_{1}\left(\mathcal{M}_{L}^{r}\right)=\operatorname{Tr}_{L / K}\left(\mathcal{M}_{L}^{r}\right)$ is also well-understood:

The Trace and the Different

Let $\delta_{L / K}=\mathcal{M}_{L}^{d}$ be the different of L / K. Then $\operatorname{Tr}_{L / K}\left(\mathcal{M}_{L}^{-d}\right) \subset \mathcal{O}_{K}$ but $\operatorname{Tr}_{L / K}\left(\mathcal{M}_{L}^{-d-1}\right) \not \subset \mathcal{O}_{K}$. Hence

$$
\begin{aligned}
\operatorname{Tr}_{L / K}\left(\mathcal{M}_{L}^{r}\right) \subset \mathcal{M}_{K}^{s} & \Leftrightarrow \mathcal{M}_{K}^{-s} \operatorname{Tr}_{L / K}\left(\mathcal{M}_{L}^{r}\right) \subset \mathcal{O}_{K} \\
& \Leftrightarrow \operatorname{Tr}_{L / K}\left(\mathcal{M}_{K}^{-s} \mathcal{M}_{L}^{r}\right) \subset \mathcal{O}_{K} \\
& \Leftrightarrow \operatorname{Tr}_{L / K}\left(\mathcal{M}_{L}^{r-n s}\right) \subset \mathcal{O}_{K} \\
& \Leftrightarrow-d \leq r-n s \\
& \Leftrightarrow s \leq \frac{r+d}{n}
\end{aligned}
$$

It follows that $\operatorname{Tr}_{L / K}\left(\mathcal{M}_{L}^{r}\right)=\mathcal{M}_{K}^{\lfloor(r+d) / n\rfloor}$. Hence

$$
\begin{aligned}
E_{1}\left(\mathcal{M}_{L}^{r}\right) & =\mathcal{M}_{K}^{\lfloor(r+d) / n\rfloor} \\
g_{1}(r) & =\left\lfloor\frac{r+d}{n}\right\rfloor
\end{aligned}
$$

Indices of Inseparability (Fried, Heiermann)

Let π_{L} be a uniformizer for L, and let

$$
\begin{aligned}
f(X) & =\sum_{h=0}^{n}(-1)^{h} a_{h} X^{n-h} \\
& =X^{n}-a_{1} X^{n_{1}}+\cdots+(-1)^{n-1} a_{n-1} X+(-1)^{n} a_{n}
\end{aligned}
$$

be the minimum polynomial for π_{L} over K.
Write $n=u p^{\nu}$ with $p \nmid u$, and for $0 \leq j \leq \nu$ define

$$
\begin{aligned}
i_{j}^{*} & =\min \left\{v_{L}\left(a_{h} \pi_{L}^{n-h}\right): 0 \leq h<n, v_{p}(n-h) \leq j\right\}-n \\
i_{j} & =\min \left\{i_{j^{\prime}}^{*}+\left(j^{\prime}-j\right) v_{L}(p): j \leq j^{\prime} \leq \nu\right\}
\end{aligned}
$$

If $\operatorname{char}(K)=p$ then $i_{j}=i_{j}^{*}$. In general, i_{j} does not depend on the choice of π_{L}.

We have $0=i_{\nu}<i_{\nu-1} \leq \cdots \leq i_{1} \leq i_{0}$.

An Example

Let $K=\mathbb{F}_{3}((t))$ and let $L=K\left(\pi_{L}\right)$, where π_{L} is a root of the Eisenstein polynomial

$$
f(X)=X^{9}+t^{5} X^{7}+t^{4} X^{6}-t^{5} X^{4}+t^{5} X^{3}-t .
$$

Then

$$
\begin{aligned}
i_{0} & =\min \left\{v_{L}\left(t^{5} \pi_{L}^{7}\right), v_{L}\left(-t^{5} \pi_{L}^{4}\right)\right\}-9 \\
& =\min \{5 \cdot 9+7,5 \cdot 9+4\}-9=40 \\
i_{1} & =\min \left\{v_{L}\left(t^{5} \pi_{L}^{7}\right), v_{L}\left(t^{4} \pi_{L}^{6}\right), v_{L}\left(-t^{5} \pi_{L}^{4}\right), v_{L}\left(t^{5} \pi_{L}^{3}\right)\right\}-9 \\
& =\min \{5 \cdot 9+7,4 \cdot 9+6,5 \cdot 9+4,5 \cdot 9+3\}-9=33 \\
i_{2} & =0 .
\end{aligned}
$$

Ramification Data

Let L / K be finite Galois, with $G=\operatorname{Gal}(L / K)$.
For $t \geq 0$ define the t th lower ramification group of L / K by

$$
G_{t}=\left\{\sigma \in G: v_{L}\left(\sigma\left(\pi_{L}\right)-\pi_{L}\right) \geq t+1\right\}
$$

The Hasse-Herbrand function of L / K is

$$
\phi_{L / K}(x)=\int_{0}^{x} \frac{d t}{\left[G: G_{t}\right]}
$$

The Hasse-Herbrand function can also be defined when L / K is separable but not Galois.

Theorem (Fried, Heiermann): For $x \geq 0$,

$$
\phi_{L / K}(x)=\frac{1}{n} \cdot \min \left\{i_{j}+p^{j} x: 0 \leq j \leq \nu\right\}
$$

$\phi_{L / K}$ for the Example

The Hasse-Herbrand function for the example can be deduced from the indices of inseparability:

The Containment Theorem

Containment Theorem: Let L / K be a totally ramified extension of degree $n=u p^{\nu}$. Let $r \in \mathbb{Z}$ and $1 \leq h \leq n$, and set $j=\min \left\{v_{p}(h), \nu\right\}$. Then

$$
\begin{aligned}
E_{h}\left(\mathcal{M}_{L}^{r}\right) & \subset \mathcal{M}_{K}^{\left\lceil\left(i_{j}+h r\right) / n\right\rceil} \\
g_{h}(r) & \geq\left\lceil\frac{i_{j}+h r}{n}\right\rceil .
\end{aligned}
$$

Remark: Since

$$
\begin{aligned}
E_{h}\left(\mathcal{M}_{L}^{r+n t}\right) & =E_{h}\left(\pi_{K}^{t} \mathcal{M}_{L}^{r}\right)=\pi_{K}^{h t} E_{h}\left(\mathcal{M}_{L}^{r}\right) \\
\left\lceil\frac{i_{j}+h(r+n t)}{n}\right\rceil & =h t+\left\lceil\frac{i_{j}+h r}{n}\right\rceil
\end{aligned}
$$

we may assume $1 \leq r \leq n$.

When do we Have Equality?

Sharp Theorem: Let K be a local field of characteristic p and let L / K be a totally ramified extension of degree $n=u p^{\nu}$. Let $0 \leq j \leq \nu$. If $i_{j}=i_{j-1}$ assume that $|\bar{K}| \geq p^{j}$. Then

$$
\begin{aligned}
\mathcal{O}_{K} \cdot E_{p^{j}}\left(\mathcal{M}_{L}^{r}\right) & =\mathcal{M}_{K}^{\left\lceil\left(i_{j}+r p^{j}\right) / n\right\rceil} \\
g_{p^{j}}(r) & =\left\lceil\frac{i_{j}+r p^{j}}{n}\right\rceil .
\end{aligned}
$$

Remark: As with the Containment Theorem we may assume $1 \leq r \leq n$. Furthermore, we may assume

$$
\left\lceil\frac{i_{j}+r p^{j}}{n}\right\rceil<\left\lceil\frac{i_{j}+(r+1) p^{j}}{n}\right\rceil
$$

Sharp Theorem for $j=0, \operatorname{char}(K)=p$

Let π_{L} be a uniformizer for L, and let $f(X)$ be the minimum polynomial for π_{L} over K. Then the different $\delta_{L / K}=\mathcal{M}_{L}^{d}$ is generated by $f^{\prime}\left(\pi_{L}\right)$.

The terms of $f(X)$ whose degree is divisible by p give 0 in $f^{\prime}(X)$. Therefore we have $d=v_{L}\left(f^{\prime}\left(\pi_{L}\right)\right)=i_{0}+n-1$.

It follows that

$$
\begin{aligned}
g_{1}(r) & =\left\lfloor\frac{r+d}{n}\right\rfloor \\
& =\left\lfloor\frac{r+i_{0}+n-1}{n}\right\rfloor \\
& =\left\lceil\frac{i_{0}+r}{n}\right\rceil .
\end{aligned}
$$

Crazy Idea ${ }^{\text {TM }}$

The Sharp Theorem holds for $j=0$ because of the relation between i_{0} and the different of L / K.

The Sharp Theorem also holds for $j \geq 1$, at least if \bar{K} is large.
Can we interpret the indices of inseparabilty i_{j} for $1 \leq j \leq \nu$ as higher order differents of L / K ?

Monomial Symmetric Functions

Let $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{h}\right)$ be a partition of some positive integer w.
View $\boldsymbol{\mu}$ as a multiset, and let $\boldsymbol{\mu}^{\prime}$ be the union of $\boldsymbol{\mu}$ with the multiset consisting of $n-h$ copies of 0 .

The monomial symmetric function in n variables associated to $\boldsymbol{\mu}$ is

$$
m_{\mu}\left(X_{1}, \ldots, X_{n}\right)=\sum_{\omega} X_{1}^{\omega_{1}} X_{2}^{\omega_{2}} \ldots X_{n}^{\omega_{n}}
$$

where the sum is taken over all distinct permutations $\boldsymbol{\omega}=\left(\omega_{1}, \ldots, \omega_{n}\right)$ of $\boldsymbol{\mu}^{\prime}$.

For $\alpha \in L$ set $M_{\mu}(\alpha)=m_{\mu}\left(\sigma_{1}(\alpha), \ldots, \sigma_{n}(\alpha)\right) \in K$.

Proving the Containment Theorem

Elements of \mathcal{M}_{L}^{r} can be expressed in the form $c_{0} \pi_{L}^{r}+c_{1} \pi_{L}^{r+1}+\ldots$ with $c_{i} \in \mathcal{O}_{K}$.

Therefore if $\alpha \in E_{h}\left(\mathcal{M}_{L}\right)$ then α is a sum of terms of the form $c_{\mu_{1}} c_{\mu_{2}} \ldots c_{\mu_{h}} M_{\mu}\left(\pi_{L}\right)$, where $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{h}\right)$ is a partition with h parts, all $\geq r$. Hence $w:=\mu_{1}+\cdots+\mu_{h} \geq r h$.
$m_{\mu}\left(X_{1}, \ldots, X_{n}\right)$ can be expressed as a polynomial in the elementary symmetric functions:

$$
m_{\mu}=\sum_{\lambda} d_{\lambda \mu} \cdot e_{\lambda_{1}} e_{\lambda_{2}} \ldots e_{\lambda_{k}}
$$

where the sum is taken over all partitions $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ of w whose parts λ_{i} are at most n. Furthermore we have $d_{\lambda \mu} \in \mathbb{Z}$.

Proving the Containment Theorem (continued)

To prove the theorem it suffices to show that for each such μ and $\boldsymbol{\lambda}$ we have

$$
d_{\lambda \mu} \cdot E_{\lambda_{1}}\left(\pi_{L}\right) E_{\lambda_{2}}\left(\pi_{L}\right) \ldots E_{\lambda_{k}}\left(\pi_{L}\right) \in \mathcal{M}_{K}^{\left[\left(i_{j}+h r\right) / n\right\rceil} .
$$

Recall that $E_{\lambda_{i}}\left(\pi_{L}\right)=a_{i}$ is a coefficient of the minimum polynomial for π_{L} over K. Hence it suffices to show that

$$
d_{\lambda \mu} \cdot a_{\lambda_{1}} a_{\lambda_{2}} \ldots a_{\lambda_{k}} \in \mathcal{M}_{K}^{\left\lceil\left(i_{j}+h r\right) / n\right\rceil} .
$$

There are two cases to consider:

- If $p^{j+1} \nmid \lambda_{i}$ for some i show $a_{\lambda_{1}} a_{\lambda_{2}} \ldots a_{\lambda_{k}} \in \mathcal{M}_{K}^{\left[\left(i_{j}+h r\right) / n\right\rceil}$.
- If $p^{j+1} \mid \lambda_{i}$ for all i show $p^{t} \mid d_{\lambda \mu}$ for some $t \geq 1$.

For the second case we need to compute $d_{\lambda \mu}$.

Proving the Sharp Theorem

In general we can find a partition $\boldsymbol{\lambda}$ of some $w \geq p^{j} r$ such that

$$
v_{K}\left(a_{\lambda_{1}} \ldots a_{\lambda_{k}}\right)=\left\lceil\frac{i_{j}+r p^{j}}{n}\right\rceil .
$$

In fact, write $i_{j}=a n-b$ with $0<b<n$ and set $\lambda_{i}=n$ for $1 \leq i<k$ and $\lambda_{k}=b$, for appropriate k.

The problem is making sure there is another partition $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{p^{j}}\right)$ of w with $\mu_{i} \geq r$ such that $p \nmid d_{\lambda \mu}$.
If $i_{j}=i_{j-1}$ there may be multiple terms to consider. We need to assume \bar{K} is large in this case to be sure we can avoid cancellations.

Tilings of Cycle Digraphs

We say that a directed graph Γ is a cycle digraph if its components are all directed cycles of length ≥ 1.

We denote the vertex set of Γ by $V(\Gamma)$.
We define the sign of Γ to be $\operatorname{sgn}(\Gamma)=(-1)^{w-c}$, where $w=|V(\Gamma)|$ and c is the number of components of Γ.

Let Γ be a cycle digraph with w vertices and let $\boldsymbol{\lambda}$ be a partition of w. A $\boldsymbol{\lambda}$-tiling of Γ is a set S of subgraphs of Γ such that

1. Each $\gamma \in S$ is a directed path of length ≥ 0.
2. $\{V(\gamma): \gamma \in S\}$ is a partition of $V(\Gamma)$.
3. The multiset $\{|V(\gamma)|: \gamma \in S\}$ is equal to $\boldsymbol{\lambda}$.

Bibrick Permutations

Let $\boldsymbol{\lambda}, \boldsymbol{\mu}$ be partitions of w. $\mathrm{A}(\boldsymbol{\lambda}, \boldsymbol{\mu})$-bibrick permutation is a triple (Γ, S, T), where Γ is a cycle digraph with w vertices, S is a λ-tiling of Γ, and T is a μ-tiling of Γ.

An isomorphism from a $(\boldsymbol{\lambda}, \boldsymbol{\mu})$-bibrick permutation (Γ, S, T) to a $(\boldsymbol{\lambda}, \boldsymbol{\mu})$-bibrick permutation $\left(\Gamma^{\prime}, S^{\prime}, T^{\prime}\right)$ is an isomorphism of digraphs $\eta: \Gamma \rightarrow \Gamma^{\prime}$ which carries S onto S^{\prime} and T onto T^{\prime}.

We say that a bibrick permutation is admissible if it has no nontrivial automorphisms.

Let $\eta_{\lambda \mu}(\Gamma)$ denote the number of isomorphism classes of admissible $(\boldsymbol{\lambda}, \boldsymbol{\mu})$-bibrick permutations (Γ, S, T).

Let $\ell(\boldsymbol{\mu})$ denote the number of parts of $\boldsymbol{\mu}$.

An Example

$$
\begin{aligned}
& \lambda=(2,2,2) \\
& \mu=(2,2,1,1)
\end{aligned}
$$

Γ :

Computing $d_{\lambda \mu}$

Let $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{h}\right)$ be a partition of w with $h=\ell(\boldsymbol{\mu}) \leq n$.
Kulikauskas and Remmel showed how to express m_{μ} in terms of elementary symmetric functions:

Theorem: Write

$$
m_{\mu}\left(X_{1}, \ldots, X_{n}\right)=\sum_{\lambda} d_{\lambda \mu} \cdot e_{\lambda_{1}} e_{\lambda_{2}} \ldots e_{\lambda_{k}},
$$

where the sum is over all partitions $\boldsymbol{\lambda}$ of w whose parts are $\leq n$. Then

$$
d_{\lambda \mu}=(-1)^{\ell(\lambda)+\ell(\mu)} \sum_{\Gamma} \operatorname{sgn}(\Gamma) \eta_{\lambda \mu}(\Gamma),
$$

where the sum is over all isomorphism classes of cycle digraphs「 with w vertices.

An Example

Let $K=\mathbb{F}_{2}((t))$ and $L=K\left(\pi_{L}\right)$, where π_{L} is a root of the Eisenstein polynomial

$$
f(X)=X^{8}+t X^{3}+t X^{2}+t
$$

The indices of inseparability of L / K are $i_{0}=3, i_{1}=i_{2}=2$, and $i_{3}=0$. Hence

$$
\left\lceil\frac{i_{2}+2^{2} \cdot 1}{8}\right\rceil=1 \quad\left\lceil\frac{i_{2}+2^{2} \cdot 2}{8}\right\rceil=2
$$

By the containment theorem we get $E_{4}\left(\mathcal{M}_{L}^{2}\right) \subset \mathcal{M}_{K}^{2}$.
Furthermore, if π_{L}^{\prime} is any uniformizer for L then the coefficient of X^{4} in the minimum polynomial of π_{L}^{\prime} over K has K-valuation ≥ 2.

So $E_{4}\left(\mathcal{M}_{L}\right) \subset \mathcal{M}_{K}^{2}$.

A More General Sharp Theorem?

Question: Let L / K be a totally ramified extension of degree $n=u p^{\nu}$, let $1 \leq h \leq n$, and set $j=\min \left\{v_{p}(h), \nu\right\}$. Is it true that if \bar{K} is sufficiently large then

$$
\mathcal{O}_{K} \cdot E_{h}\left(\mathcal{M}_{L}^{r}\right)=\mathcal{M}_{K}^{\left\lceil\left(i_{j}+h r\right) / n\right\rceil} ?
$$

