Trace, Norm, Etc.

Kevin Keating Department of Mathematics University of Florida

May 26, 2016

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Local Fields

Let K be a field which is complete with respect to a discrete valuation $v_K : K^{\times} \to \mathbb{Z}$, whose residue field \overline{K} is a perfect field of characteristic p. Also let

$$\mathcal{O}_{\mathcal{K}} = \{ \alpha \in \mathcal{K} : v_{\mathcal{K}}(\alpha) \ge 0 \}$$

= ring of integers of \mathcal{K}

 $\pi_{\mathcal{K}}=$ uniformizer for $\mathcal{O}_{\mathcal{K}}$ (i. e., $v_{\mathcal{K}}(\pi_{\mathcal{K}})=1)$

$$\mathcal{M}_{\mathcal{K}} = \pi_{\mathcal{K}} \cdot \mathcal{O}_{\mathcal{K}}$$

= unique maximal ideal of $\mathcal{O}_{\mathcal{K}}$

Then $\overline{K} = \mathcal{O}_K / \mathcal{M}_K$.

Let L/K be a separable totally ramified extension of degree [L:K] = n.

Symmetric Polynomials and Extensions

For $1 \le h \le n$ let

$$e_h(X_1,\ldots,X_n) = \sum_{1 \le t_1 < \cdots < t_h \le n} X_{t_1} \ldots X_{t_h}$$

be the hth elementary symmetric polynomial in n variables.

Define
$$E_h : L \to K$$
 by $E_h(\alpha) = e_h(\sigma_1(\alpha), \dots, \sigma_n(\alpha))$, where
 $\sigma_1, \dots, \sigma_n$ are the K-embeddings of L into K^{sep} . Then
 $e_1(X_1, \dots, X_n) = X_1 + \dots + X_n \Rightarrow E_1(\alpha) = \operatorname{Tr}_{L/K}(\alpha)$
 $e_n(X_1, \dots, X_n) = X_1 X_2 \dots X_n \Rightarrow E_n(\alpha) = \operatorname{N}_{L/K}(\alpha)$
Suppose $L = K(\alpha)$ and $f_\alpha(X) = X^n + \sum_{h=1}^n (-1)^h b_h X^{n-h}$ is
the minimum polynomial for α over K. Then $E_h(\alpha) = b_h$.

The Problem

Problem: Determine $E_h(\mathcal{M}_L^r)$.

But $E_h(\mathcal{M}_L^r)$ can be quite complicated. In particular, it does not have to be a (fractional) ideal.

Easier problem: Determine $\mathcal{O}_{\mathcal{K}} \cdot E_h(\mathcal{M}_L^r) = \mathcal{M}_{\mathcal{K}}^h$.

Equivalently, determine $g_h:\mathbb{Z} \to \mathbb{Z}$ defined by

$$g_h(r) = \min\{v_{\mathcal{K}}(E_h(\alpha)) : \alpha \in \mathcal{M}_L^r\}.$$

Of course, $\mathcal{O}_{K} \cdot E_{n}(\mathcal{M}_{L}^{r}) = \mathcal{O}_{K} \cdot N_{L/K}(\mathcal{M}_{L}^{r}) = \mathcal{M}_{K}^{r}$, so $g_{n}(r) = r$.

 $E_1(\mathcal{M}_L^r) = \mathsf{Tr}_{L/K}(\mathcal{M}_L^r)$ is also well-understood:

The Trace and the Different

Let $\delta_{L/K} = \mathcal{M}_L^d$ be the different of L/K. Then $\operatorname{Tr}_{L/K}(\mathcal{M}_L^{-d}) \subset \mathcal{O}_K$ but $\operatorname{Tr}_{L/K}(\mathcal{M}_L^{-d-1}) \not\subset \mathcal{O}_K$. Hence

$$\mathsf{Tr}_{L/K}(\mathcal{M}_{L}^{r}) \subset \mathcal{M}_{K}^{s} \Leftrightarrow \mathcal{M}_{K}^{-s}\mathsf{Tr}_{L/K}(\mathcal{M}_{L}^{r}) \subset \mathcal{O}_{K} \\ \Leftrightarrow \mathsf{Tr}_{L/K}(\mathcal{M}_{K}^{-s}\mathcal{M}_{L}^{r}) \subset \mathcal{O}_{K} \\ \Leftrightarrow \mathsf{Tr}_{L/K}(\mathcal{M}_{L}^{r-ns}) \subset \mathcal{O}_{K} \\ \Leftrightarrow -d \leq r - ns \\ \Leftrightarrow s \leq \frac{r+d}{n}.$$

It follows that $\operatorname{Tr}_{L/K}(\mathcal{M}_L^r) = \mathcal{M}_K^{\lfloor (r+d)/n \rfloor}$. Hence

$$E_1(\mathcal{M}_L^r) = \mathcal{M}_K^{\lfloor (r+d)/n
floor}$$
 $g_1(r) = \left\lfloor rac{r+d}{n}
ight
floor.$

Indices of Inseparability (Fried, Heiermann) Let π_L be a uniformizer for L, and let

$$f(X) = \sum_{h=0}^{n} (-1)^{h} a_{h} X^{n-h}$$

= $X^{n} - a_{1} X^{n_{1}} + \dots + (-1)^{n-1} a_{n-1} X + (-1)^{n} a_{n}$

be the minimum polynomial for π_L over K.

Write $n = up^{\nu}$ with $p \nmid u$, and for $0 \leq j \leq \nu$ define

$$i_j^* = \min\{v_L(a_h \pi_L^{n-h}) : 0 \le h < n, \ v_p(n-h) \le j\} - n$$

$$i_j = \min\{i_{j'}^* + (j'-j)v_L(p) : j \le j' \le \nu\}.$$

If char(K) = p then $i_j = i_j^*$. In general, i_j does not depend on the choice of π_L .

We have $0 = i_{\nu} < i_{\nu-1} \leq \cdots \leq i_1 \leq i_0$.

An Example

Let $K = \mathbb{F}_3((t))$ and let $L = K(\pi_L)$, where π_L is a root of the Eisenstein polynomial

$$f(X) = X^9 + t^5 X^7 + t^4 X^6 - t^5 X^4 + t^5 X^3 - t.$$

Then

$$i_{0} = \min\{v_{L}(t^{5}\pi_{L}^{7}), v_{L}(-t^{5}\pi_{L}^{4})\} - 9$$

= min{5 · 9 + 7, 5 · 9 + 4} - 9 = 40
$$i_{1} = \min\{v_{L}(t^{5}\pi_{L}^{7}), v_{L}(t^{4}\pi_{L}^{6}), v_{L}(-t^{5}\pi_{L}^{4}), v_{L}(t^{5}\pi_{L}^{3})\} - 9$$

= min{5 · 9 + 7, 4 · 9 + 6, 5 · 9 + 4, 5 · 9 + 3} - 9 = 33
$$i_{2} = 0.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Ramification Data

Let L/K be finite Galois, with G = Gal(L/K).

For $t \ge 0$ define the *t*th lower ramification group of L/K by

$$\mathcal{G}_t = \{\sigma \in \mathcal{G} : \mathsf{v}_{\mathsf{L}}(\sigma(\pi_{\mathsf{L}}) - \pi_{\mathsf{L}}) \geq t+1\}.$$

The Hasse-Herbrand function of L/K is

$$\phi_{L/K}(x) = \int_0^x \frac{dt}{[G:G_t]}.$$

The Hasse-Herbrand function can also be defined when L/K is separable but not Galois.

Theorem (Fried, Heiermann): For $x \ge 0$,

$$\phi_{L/K}(x) = \frac{1}{n} \cdot \min\{i_j + p^j x : 0 \le j \le \nu\}.$$

$\phi_{L/K}$ for the Example

The Hasse-Herbrand function for the example can be deduced from the indices of inseparability:

The Containment Theorem

Containment Theorem: Let L/K be a totally ramified extension of degree $n = up^{\nu}$. Let $r \in \mathbb{Z}$ and $1 \le h \le n$, and set $j = \min\{v_p(h), \nu\}$. Then

$$E_h(\mathcal{M}_L^r) \subset \mathcal{M}_K^{\lceil (i_j+hr)/n\rceil}$$

 $g_h(r) \geq \left\lceil \frac{i_j+hr}{n}
ight
ceil.$

Remark: Since

$$E_h(\mathcal{M}_L^{r+nt}) = E_h(\pi_K^t \mathcal{M}_L^r) = \pi_K^{ht} E_h(\mathcal{M}_L^r)$$
$$\left\lceil \frac{i_j + h(r+nt)}{n} \right\rceil = ht + \left\lceil \frac{i_j + hr}{n} \right\rceil$$

we may assume $1 \le r \le n$.

When do we Have Equality?

Sharp Theorem: Let K be a local field of characteristic p and let L/K be a totally ramified extension of degree $n = up^{\nu}$. Let $0 \le j \le \nu$. If $i_j = i_{j-1}$ assume that $|\overline{K}| \ge p^j$. Then

$$\mathcal{O}_{K} \cdot E_{p^{j}}(\mathcal{M}_{L}^{r}) = \mathcal{M}_{K}^{\lceil (i_{j}+rp^{j})/n}$$
 $g_{p^{j}}(r) = \left\lceil rac{i_{j}+rp^{j}}{n}
ight
ceil.$

Remark: As with the Containment Theorem we may assume $1 \le r \le n$. Furthermore, we may assume

$$\left\lceil \frac{i_j + rp^i}{n} \right\rceil < \left\lceil \frac{i_j + (r+1)p^i}{n} \right\rceil$$

Sharp Theorem for j = 0, char(K) = p

Let π_L be a uniformizer for L, and let f(X) be the minimum polynomial for π_L over K. Then the different $\delta_{L/K} = \mathcal{M}_L^d$ is generated by $f'(\pi_L)$.

The terms of f(X) whose degree is divisible by p give 0 in f'(X). Therefore we have $d = v_L(f'(\pi_L)) = i_0 + n - 1$.

It follows that

$$g_1(r) = \left\lfloor rac{r+d}{n}
ight
floor$$
 $= \left\lfloor rac{r+i_0+n-1}{n}
ight
floor$
 $= \left\lceil rac{i_0+r}{n}
ight
ceil.$

The Sharp Theorem holds for j = 0 because of the relation between i_0 and the different of L/K.

The Sharp Theorem also holds for $j \ge 1$, at least if \overline{K} is large.

Can we interpret the indices of inseparability i_j for $1 \le j \le \nu$ as higher order differents of L/K?

Monomial Symmetric Functions

Let $\mu = (\mu_1, \dots, \mu_h)$ be a partition of some positive integer w.

View μ as a multiset, and let μ' be the union of μ with the multiset consisting of n - h copies of 0.

The monomial symmetric function in n variables associated to μ is

$$m_{\mu}(X_1,\ldots,X_n)=\sum_{\omega}X_1^{\omega_1}X_2^{\omega_2}\ldots X_n^{\omega_n},$$

where the sum is taken over all distinct permutations $\boldsymbol{\omega} = (\omega_1, \dots, \omega_n)$ of $\boldsymbol{\mu}'$.

For
$$\alpha \in L$$
 set $M_{\mu}(\alpha) = m_{\mu}(\sigma_1(\alpha), \ldots, \sigma_n(\alpha)) \in K$.

Proving the Containment Theorem

Elements of \mathcal{M}_{L}^{r} can be expressed in the form $c_{0}\pi_{L}^{r} + c_{1}\pi_{L}^{r+1} + \ldots$ with $c_{i} \in \mathcal{O}_{K}$.

Therefore if $\alpha \in E_h(\mathcal{M}_L)$ then α is a sum of terms of the form $c_{\mu_1}c_{\mu_2}\ldots c_{\mu_h}M_\mu(\pi_L)$, where $\boldsymbol{\mu} = (\mu_1,\ldots,\mu_h)$ is a partition with h parts, all $\geq r$. Hence $w := \mu_1 + \cdots + \mu_h \geq rh$.

 $m_{\mu}(X_1, \ldots, X_n)$ can be expressed as a polynomial in the elementary symmetric functions:

$$m_{\mu} = \sum_{\lambda} d_{\lambda\mu} \cdot e_{\lambda_1} e_{\lambda_2} \dots e_{\lambda_k},$$

where the sum is taken over all partitions $\lambda = (\lambda_1, \dots, \lambda_k)$ of w whose parts λ_i are at most n. Furthermore we have $d_{\lambda\mu} \in \mathbb{Z}$.

Proving the Containment Theorem (continued)

To prove the theorem it suffices to show that for each such μ and λ we have

$$d_{\boldsymbol{\lambda}\boldsymbol{\mu}} \cdot E_{\lambda_1}(\pi_L) E_{\lambda_2}(\pi_L) \dots E_{\lambda_k}(\pi_L) \in \mathcal{M}_K^{\lceil (i_j+hr)/n \rceil}$$

Recall that $E_{\lambda_i}(\pi_L) = a_i$ is a coefficient of the minimum polynomial for π_L over K. Hence it suffices to show that

$$d_{\boldsymbol{\lambda}\boldsymbol{\mu}} \cdot \boldsymbol{a}_{\lambda_1} \boldsymbol{a}_{\lambda_2} \dots \boldsymbol{a}_{\lambda_k} \in \mathcal{M}_K^{\lceil (i_j + hr)/n \rceil}$$

There are two cases to consider:

If p^{j+1} ∤ λ_i for some i show a_{λ1}a_{λ2}...a_{λk} ∈ M^[(i_j+hr)/n]_K.
If p^{j+1} | λ_i for all i show p^t | d_{λμ} for some t ≥ 1.

For the second case we need to compute $d_{\lambda\mu}$.

Proving the Sharp Theorem

In general we can find a partition λ of some $w \ge p^j r$ such that

$$v_{\mathcal{K}}(a_{\lambda_1}\ldots a_{\lambda_k}) = \left\lceil \frac{i_j + rp^j}{n} \right\rceil$$

In fact, write $i_j = an - b$ with 0 < b < n and set $\lambda_i = n$ for $1 \le i < k$ and $\lambda_k = b$, for appropriate k.

The problem is making sure there is another partition $\mu = (\mu_1, \dots, \mu_{p^j})$ of w with $\mu_i \ge r$ such that $p \nmid d_{\lambda\mu}$.

If $i_j = i_{j-1}$ there may be multiple terms to consider. We need to assume \overline{K} is large in this case to be sure we can avoid cancellations.

Tilings of Cycle Digraphs

We say that a directed graph Γ is a cycle digraph if its components are all directed cycles of length ≥ 1 .

We denote the vertex set of Γ by $V(\Gamma)$.

We define the sign of Γ to be $\operatorname{sgn}(\Gamma) = (-1)^{w-c}$, where $w = |V(\Gamma)|$ and c is the number of components of Γ .

Let Γ be a cycle digraph with w vertices and let λ be a partition of w. A λ -tiling of Γ is a set S of subgraphs of Γ such that

- 1. Each $\gamma \in S$ is a directed path of length ≥ 0 .
- 2. $\{V(\gamma) : \gamma \in S\}$ is a partition of $V(\Gamma)$.
- 3. The multiset $\{|V(\gamma)| : \gamma \in S\}$ is equal to λ .

Bibrick Permutations

Let λ, μ be partitions of w. A (λ, μ) -bibrick permutation is a triple (Γ, S, T) , where Γ is a cycle digraph with w vertices, S is a λ -tiling of Γ , and T is a μ -tiling of Γ .

An isomorphism from a (λ, μ) -bibrick permutation (Γ, S, T) to a (λ, μ) -bibrick permutation (Γ', S', T') is an isomorphism of digraphs $\eta : \Gamma \to \Gamma'$ which carries S onto S' and T onto T'.

We say that a bibrick permutation is admissible if it has no nontrivial automorphisms.

Let $\eta_{\lambda\mu}(\Gamma)$ denote the number of isomorphism classes of admissible (λ, μ) -bibrick permutations (Γ, S, T) .

Let $\ell(\mu)$ denote the number of parts of μ .

An Example

$$\lambda = (2, 2, 2)$$

 $\mu = (2, 2, 1, 1)$

▲ロト ▲母 ト ▲目 ト ▲目 ト ● ○ ○ ○ ○ ○

Computing $d_{\lambda\mu}$

Let $\mu = (\mu_1, \dots, \mu_h)$ be a partition of w with $h = \ell(\mu) \le n$.

Kulikauskas and Remmel showed how to express m_{μ} in terms of elementary symmetric functions:

Theorem: Write

$$m_{\mu}(X_1,\ldots,X_n)=\sum_{\lambda}d_{\lambda\mu}\cdot e_{\lambda_1}e_{\lambda_2}\ldots e_{\lambda_k},$$

where the sum is over all partitions λ of w whose parts are \leq *n*. Then

$$d_{\lambda\mu} = (-1)^{\ell(\lambda)+\ell(\mu)} \sum_{\Gamma} \operatorname{sgn}(\Gamma) \eta_{\lambda\mu}(\Gamma),$$

where the sum is over all isomorphism classes of cycle digraphs Γ with w vertices.

An Example

Let $K = \mathbb{F}_2((t))$ and $L = K(\pi_L)$, where π_L is a root of the Eisenstein polynomial

$$f(X) = X^8 + tX^3 + tX^2 + t.$$

The indices of inseparability of L/K are $i_0 = 3$, $i_1 = i_2 = 2$, and $i_3 = 0$. Hence

$$\left\lceil \frac{i_2 + 2^2 \cdot 1}{8} \right\rceil = 1 \qquad \left\lceil \frac{i_2 + 2^2 \cdot 2}{8} \right\rceil = 2.$$

By the containment theorem we get $E_4(\mathcal{M}_L^2) \subset \mathcal{M}_K^2$. Furthermore, if π'_L is any uniformizer for L then the coefficient of X^4 in the minimum polynomial of π'_L over K has K-valuation ≥ 2 .

So
$$E_4(\mathcal{M}_L) \subset \mathcal{M}_K^2$$
.

A More General Sharp Theorem?

Question: Let L/K be a totally ramified extension of degree $n = up^{\nu}$, let $1 \le h \le n$, and set $j = \min\{v_p(h), \nu\}$. Is it true that if \overline{K} is sufficiently large then

$$\mathcal{O}_{K} \cdot E_{h}(\mathcal{M}_{L}^{r}) = \mathcal{M}_{K}^{\lceil (i_{j}+hr)/n \rceil}$$
?